Microservices with
Spring Boot + Spring Data

Using Spring Boot and Spring Data to quick develop
HATEOAS microservices

Bernardo Silva

Terminology

= Whatis CRUD?

m What is REST?

= Whatis Spring?

m What is HATEOAS?

m What is Microservicee

m SO... hands onl

What is CRUD?

m “In computer programming, create, read,
update and delete (as an acronym CRUD or
possibly a Backronym) (Sometimes called SCRUD
with an "S" for Search) are the four basic functions
of persistent storage.”

> http://en.wikipedia.org/wiki/Create, read, update and delete

What is REST?

m “Representational state transfer (REST) is an
abstraction of the archifecture of the World Wide
Web; more precisely, REST is an architectural style
consisting of a coordinated set of architectural
consfraints applied to components, connectors,
and data elements, within a distributed
hypermedia system.”

m ©itp://en.wikipedia.org/wiki/REST

Basic CRUD with REST

Create PUT / POST
Read (Retrieve) GET
Update (Modify) PUT / PATCH

Delete (Destroy) DELETE

What is Spring?

m “The Spring Framework is an open source
application framework and inversion of control
container for the Java platform.”

> http://en.wikipedia.org/wiki/Spring Framework

= |nversion of confrol container / dependency
injection

= Enrichment and proxying

Inversion of control
container / dependency
iInjection:

@Component
class A {
classA{ . @Autowired
B b =new Bimpl(); B b:
b b
¥ !

Spring

intferface B { interface B {

(...)
} } (...)

Y

class Bimpl implements B {

(@Component <
...) class Bimpl implements B {

} ()

}

Enrichment and proxying:

@Component
class A {

@Avutowired)
B b: Spring

} |
v

interface B{| |mplements| Proxy

} (...) < L

@Component <
class Bimpl implements B {

(...)

Delegates

}

What is HATEOAS®?

m “HATEOAS, an abbreviation for Hypermedia as
the Engine of Application State, is a constraint of
the REST application architecture that
distinguishes it from most other network
application architectures.”

> http://en.wikipedia.org/wiki/HATEOAS

HATEOAS samples

XML

<person xmlns.atom="http://www.w3.org/2005/Atom">
<firstname>Dave</firsthame>
<lasthame>Matthews</lasthame>
<links>
<atom:link rel="self" href="http://myhost/people/1" />
</links>
</person>

JSON

{ firsthname : "Dave",
lastname : "Matthews",
links : [{rel : "self", href : "http://myhost/people/1"}] }

What is Microservicee

m “The term "Microservice Architecture" has sprung
up over the last few years to describe a
particular way of designing software applications
as suites of independently deployable services.”

> http://martinfowler.com/articles/microservices.nhtml

Microservices Reference

® The “ID” on a HATEOAS system is mainly an URI

m Example: If you create a “teacher”, his “id” will be
“hitp://localhost:8080/teacher/1" instead of just “1".

m Then, each Microservice can reference other
services entities.

So... hands on!

1) Using Gradle, you create a simple Spring Boot project:

> http://projects.spring.io/spring-boot/

2) You create a basic Spring Boot main class (it can be
converted to a WAR later).

3) Then you boot doing:
> gradle bootRun

build.gradle

m Buildscript dependencies:

> classpath("org.springframework.boot:spring-boot-gradle-plugin:1.1.5.RELEASE”)

m Body:
> apply plugin: 'spring-boot’

m Dependencies:

» compile("org.springframework.boot:spring-boot-starter-web”)

Application.java

m Annotfations:
> @Configuration Magic!
»@ComponeniScan

» @Enable AutoConfiguration

= Main method (unnecessary for WAR):

> SpringApplication.run(Application.class, args);

Adding Hibernate (ORM)

® puild.gradle (dependencies):.
» compile("org.springframework.boot:spring-boot-starter-data-jpa’)
» compile("com.h2database:h2:1.3.176")

» compile("org.projectlombok:lombok:1.14.4")

Just to make
Entities more
dumb

Adding Spring Data REST

m puild.gradle (dependencies):

» compile("org.springframework.data:spring-data-rest-webmvc")

m Application.java:

» @Import(RepositoryRestMvcConfiguration.class)

\ SUPER

Magic!

Teacher and Student DDL

> STUDENT_ID
TEACHER_ID <

STUDENT TEACHER

— D 1D —

NAME NAME
AGE SUBJECT

Adding “Teacher” entity

@Data

@Entity

@EqualsAndHashCode (exclude={"students})

public class Teacher {
@ld
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;

private String name;
private String subject;

@ManyToMany
@lJoinTable(name = "STUDENT_TEACHERS",
joinColumns = { @JoinColumn(name = "TEACHER_ID")},
inverseJoinColumns = { @JoinColumn(name = "STUDENT_ID")})
private Set<Student> students;

Adding “Student” entity

@Data

@Entity

@EqualsAndHashCode (exclude={"teachers"})

public class Student {
@ld
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;

private String name;
private Integer age;

@ManyToMany
@lJoinTable(name = "STUDENT_TEACHERS",
joinColumns = { @JoinColumn(name = "STUDENT_ID")},
inverseJoinColumns = { @JoinColumn(name = "TEACHER_ID")})
private Set<Teacher> teachers;

Adding REST repositories

StudentRepository.java

@RepositoryRestResource(
collectionResourceRel = "student”, path = "student")
public intferface StudentRepository extends
PagingAndSortingRepository<Student, Long> {

}

TeacherRepository.java

@RepositoryRestResource(
collectionResourceRel = "teacher’, path = "feacher’)
public interface TeacherRepository extends
PagingAndSortingRepository<Teacher, Long> {

}

Run and be amazed!

m Try to get the root service description:
» GET: http://localhost:8080/

m Try to create two students, two feachers and
associate them!

» POST: http://localhost:8080/student

m Use "PATCH" with “text/uri-list’ to link entities

m Get JSON Schema of the entity:
» GET: http://localhost:8080/student/schema
» Accept: application/schema+json

Examples:

m POST: hitp://localhost:8080/student
> {"name"; "John", "age": 18 }
> {"name"; "Jorge", "age": 19}

m POST: http://localhost:8080/teacher
> {"name": "James", "subject": "Math" }

m PUT/PATCH: htitp://localhost:8080/student/1/teachers
> Content-Type: text/uri-list
http://localhost:8080/teacher/1
http://localhost:8080/teacher/2

m GET: http://localhost:8080/teacher/1/students

QUESTIONS!

bernardo.siliva@gmail.com
bernardo.silva@rackspace.com

